Iranian Journal of Orthodontics

Published by: Kowsar

Evaluation of Coating Stability, Surface Characteristics and Biocompatibility of Nano Particle Coated Stainless Steel, Nickel-Titanium and Beta-Titanium Orthodontic Arch Wires in Comparison with Uncoated Wires: An In-Vitro Study

Vasim Pinchani 1 , Ajit J Kalia 1 , Kannan Sharif 1 , Salil Nene 1 , Nasim Mirdehghan 1 and Khadija M Dalvi 1 , *
Authors Information
1 Department of Orthodontics and Dentofacial Orthopaedics, M.A.Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
Article information
  • Iranian Journal of Orthodontics: 14 (1); e69613
  • Published Online: March 6, 2019
  • Article Type: Original Article
  • Received: April 20, 2018
  • Revised: October 12, 2018
  • Accepted: February 12, 2019
  • DOI: 10.5812/ijo.69613

To Cite: Pinchani V , Kalia A J, Sharif K, Nene S , Mirdehghan N , et al. Evaluation of Coating Stability, Surface Characteristics and Biocompatibility of Nano Particle Coated Stainless Steel, Nickel-Titanium and Beta-Titanium Orthodontic Arch Wires in Comparison with Uncoated Wires: An In-Vitro Study, Iran J Ortho. Online ahead of Print ; 14(1):e69613. doi: 10.5812/ijo.69613.

Abstract
Copyright © 2019, Iranian Journal of Orthodontics. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Grimsdottir MR, Gjerdet NR, Hensten-Pettersen A. Composition and in vitro corrosion of orthodontic appliances. Am J Orthod Dentofacial Orthop. 1992;101(6):525-32. doi: 10.1016/0889-5406(92)70127-V. [PubMed: 1350883].
  • 2. Barrett RD, Bishara SE, Quinn JK. Biodegradation of orthodontic appliances. Part I. Biodegradation of nickel and chromium in vitro. Am J Orthod Dentofacial Orthop. 1993;103(1):8-14. doi: 10.1016/0889-5406(93)70098-9. [PubMed: 8422037].
  • 3. Noble J, Ahing SI, Karaiskos NE, Wiltshire WA. Nickel allergy and orthodontics, a review and report of two cases. Br Dent J. 2008;204(6):297-300. doi: 10.1038/bdj.2008.198. [PubMed: 18356874].
  • 4. Balenseifen JW, Madonia JV. Study of dental plaque in orthodontic patients. J Dent Res. 1970;49(2):320-4. doi: 10.1177/00220345700490022101. [PubMed: 5264596].
  • 5. Eliades T, Eliades G, Athanasiou AE, Bradley TG. Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod. 2000;22(3):317-26. [PubMed: 10920564].
  • 6. Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature. 1997;387(6635):791-3. doi: 10.1038/42910.
  • 7. Chen WX, Tu JP, Xu ZD, Tenne R, Rosenstveig R, Chen WL, et al. Wear and friction of Ni-P electroless composite coating including inorganic fullerene-WS2 nanoparticles. Adv Eng Mater. 2002;4(9):686-90. doi: 10.1002/1527-2648(20020916)4:9<686::aid-adem686>3.0.co;2-i.
  • 8. McKnight-Hanes C, Whitford GM. Fluoride release from three glass ionomer materials and the effects of varnishing with or without finishing. Caries Res. 1992;26(5):345-50. doi: 10.1159/000261466. [PubMed: 1468098].
  • 9. Daems J, Celis JP, Willems G. Morphological characterization of as-received and in vivo orthodontic stainless steel archwires. Eur J Orthod. 2009;31(3):260-5. doi: 10.1093/ejo/cjn104. [PubMed: 19188281].
  • 10. Park JB, Kim YK. Metallic biomaterials. In: Bronzino JD, editor. The biomedical engineering handbook. 2nd ed. Boca Raton, FL, USA: CRC Press LLC; 2000.
  • 11. da Silva DL, Mattos CT, Simao RA, de Oliveira Ruellas AC. Coating stability and surface characteristics of esthetic orthodontic coated archwires. Angle Orthod. 2013;83(6):994-1001. doi: 10.2319/111112-866.1. [PubMed: 23650959].
  • 12. Rongo R, Ametrano G, Gloria A, Spagnuolo G, Galeotti A, Paduano S, et al. Effects of intraoral aging on surface properties of coated nickel-titanium archwires. Angle Orthod. 2014;84(4):665-72. doi: 10.2319/081213-593.1. [PubMed: 24308528].
  • 13. Demling A, Elter C, Heidenblut T, Bach FW, Hahn A, Schwestka-Polly R, et al. Reduction of biofilm on orthodontic brackets with the use of a polytetrafluoroethylene coating. Eur J Orthod. 2010;32(4):414-8. doi: 10.1093/ejo/cjp142. [PubMed: 20139131].
  • 14. Prososki RR, Bagby MD, Erickson LC. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofacial Orthop. 1991;100(4):341-8. doi: 10.1016/0889-5406(91)70072-5. [PubMed: 1927985].
  • 15. Kusy RP, Whitley JQ, Mayhew MJ, Buckthal JE. Surface roughness of orthodontic archwires via laser spectroscopy. Angle Orthod. 1988;58(1):33-45. doi: 10.1043/0003-3219(1988)058<0033:SROOA>2.0.CO;2. [PubMed: 3162662].
  • 16. Tselepis M, Brockhurst P, West VC. The dynamic frictional resistance between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop. 1994;106(2):131-8. [PubMed: 8059748].
  • 17. Feldman Y, Wasserman E, Srolovitz DJ, Tenne R. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science. 1995;267(5195):222-5. doi: 10.1126/science.267.5195.222. [PubMed: 17791343].
  • 18. Redlich M, Katz A, Rapoport L, Wagner HD, Feldman Y, Tenne R. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS(2) impregnated in electroless nickel-phosphorous film. Dent Mater. 2008;24(12):1640-6. doi: 10.1016/j.dental.2008.03.030. [PubMed: 18495238].
  • 19. Tenne R, Margulis L, Genut M, Hodes G. Polyhedral and cylindrical structures of tungsten disulphide. Nature. 1992;360(6403):444-6. doi: 10.1038/360444a0.
  • 20. Wei S, Shao T, Ding P. Study of CNx films on 316L stainless steel for orthodontic application. Diam Relat Mater. 2010;19(5-6):648-53. doi: 10.1016/j.diamond.2010.02.040.
  • 21. Espinar E, Llamas JM, Michiardi A, Ginebra MP, Gil FJ. Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments. J Mater Sci Mater Med. 2011;22(5):1119-25. doi: 10.1007/s10856-011-4292-9. [PubMed: 21437639].
  • 22. Kobayashi S, Ohgoe Y, Ozeki K, Hirakuri K, Aoki H. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires. J Mater Sci Mater Med. 2007;18(12):2263-8. doi: 10.1007/s10856-007-3118-2. [PubMed: 17562139].
  • 23. Xu JL, Liu F, Wang FP, Zhao LC. Alumina coating formed on medical NiTi alloy by micro-arc oxidation. Mater Lett. 2008;62(25):4112-4. doi: 10.1016/j.matlet.2008.06.009.
  • 24. Sun T, Lee WC, Wang M. A comparative study of apatite coating and apatite/collagen composite coating fabricated on NiTi shape memory alloy through electrochemical deposition. Mater Lett. 2011;65(17-18):2575-7. doi: 10.1016/j.matlet.2011.05.107.
  • 25. Grill A. Diamond-like carbon: State of the art. Diam Relat Mater. 1999;8(2-5):428-34. doi: 10.1016/s0925-9635(98)00262-3.
  • 26. Li Q, Xia YY, Tang JC, Wang RY, Bei CY, Zeng Y. In vitro and in vivo biocompatibility investigation of diamond-like carbon coated nickel-titanium shape memory alloy. Artif Cells Blood Substit Immobil Biotechnol. 2011;39(3):137-42. doi: 10.3109/10731199.2010.502880. [PubMed: 20653335].
  • 27. Matos de Souza R, Macedo de Menezes L. Nickel, chromium and iron levels in the saliva of patients with simulated fixed orthodontic appliances. Angle Orthod. 2008;78(2):345-50. doi: 10.2319/111806-466.1. [PubMed: 18251615].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments